		mark		Sub
1(i)		murk		Sub
	$\mathbf{R} + \begin{pmatrix} -3\\4 \end{pmatrix} + \begin{pmatrix} 21\\-7 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$ $\mathbf{R} = \begin{pmatrix} -18\\3 \end{pmatrix}$	M1	Sum to zero	
	$\mathbf{R} = \begin{pmatrix} -18 \\ 3 \end{pmatrix}$	A1	Award if seen here or in (ii) or used in (ii).	
			$[SC1for \begin{pmatrix} 18 \\ -3 \end{pmatrix}]$	2
(ii)				
	$ \mathbf{R} = \sqrt{18^2 + 3^2}$	M1	Use of Pythagoras	
	= 18.248 so 18.2 N (3 s. f.)	A1	Any reasonable accuracy. FT R (with 2 non-zero cpts)	
	angle is $180 - \arctan\left(\frac{3}{18}\right) = 170.53^{\circ}$	M1	Allow $\arctan\left(\frac{\pm 3}{\pm 18}\right)$ or $\arctan\left(\frac{\pm 18}{\pm 3}\right)$	
	so 171° (3 s. f.)	A1	Any reasonable accuracy. FT ${\bf R}$ provided their angle is obtuse but not 180°	4
	total	6		

		mark		Sub
2(i)	$x = 2 \Rightarrow t = 4$ $t = 4 \Rightarrow y = 16 - 1 = 15$	B1 F1	cao FT their t and y. Accept 15 j	2
(ii)	$x = \frac{1}{2}t \text{ and } y = t^2 - 1$ Eliminating t gives $y = ((2x)^2 - 1) = 4x^2 - 1$	M1	Attempt at elimination of expressions for x and y in terms of t Accept seeing $(2x)^2 - 1 = 4x^2 - 1$	2
(iii)	either We require $\frac{dy}{dx} = 1$ so $8x = 1$ $x = \frac{1}{8}$ and the point is $\left(\frac{1}{8}, -\frac{15}{16}\right)$ or Differentiate to find \mathbf{v} equate \mathbf{i} and \mathbf{j} cpts so $t = \frac{1}{4}$ and the point is $\left(\frac{1}{8}, -\frac{15}{16}\right)$	M1 B1 A1 M1 M1	This may be implied Differentiating correctly to obtain 8x Equating the i and j cpts of their v	3
	total	7		

3	(i)	$ \mathbf{p} = \sqrt{8^2 + 1^2}$	M1	For applying Pythagoras theorem	
		$ \mathbf{p} = \sqrt{65}$	A1		
		$ \mathbf{q} = \sqrt{4^2 + (-7)^2} = \sqrt{65}$ They are equal	A1	Condone no explicit statement that they are equal	
			[3]		
	(ii)	$\mathbf{p} + \mathbf{q} = 12\mathbf{i} - 6\mathbf{j}$	M1		
		$\mathbf{p} + \mathbf{q} = 6(2\mathbf{i} - \mathbf{j})$ so $\mathbf{p} + \mathbf{q}$ is parallel to $2\mathbf{i} - \mathbf{j}$	E1	Accept argument based on gradients being equal. "Parallel" may be implied	
			[2]		
	(iii)		B1 B1	One mark for each of $\mathbf{p} + \mathbf{q}$ and $\mathbf{p} - \mathbf{q}$ drawn correctly SC1 if arrows missing or incorrect from otherwise correct vectors	
		The angle is 90°	B1	Cao	
			[3]		

4 (i)	$ \mathbf{F} = \sqrt{(-1)^2 + 5^2}$ = $\sqrt{26} = 5.0990 = 5.10 \text{ (3 s. f.)}$ Angle with j is arctan(0.2) so 11.309 so 11.3° (3 s. f.)	M1 A1 M1 A1	Accept $\sqrt{-1^2 + 5^2}$ even if taken to be $\sqrt{24}$ accept $\arctan(p)$ where $p = \pm 0.2$ or ± 5 o.e. cao	4
(ii)	$\begin{pmatrix} -2 \\ 3b \end{pmatrix} = 4 \begin{pmatrix} -1 \\ 5 \end{pmatrix} + \begin{pmatrix} 2a \\ a \end{pmatrix}$ $a = 1, b = 7$ so $\mathbf{G} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\mathbf{H} = \begin{pmatrix} -2 \\ 21 \end{pmatrix}$ or $\mathbf{G} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{H} = -2\mathbf{i} + 21\mathbf{j}$	M1 M1 A1 A1	H = 4F + G soi Formulating at least 1 scalar equation from their vector equation soi a correct or G follows from their wrong a H cao	4
				8

		Mark	Comment	Sub
5(i)	$\mathbf{F} + \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	M1	N2L. $F = ma$. All forces present	
		B1 B1	Addition to get resultant. May be implied. For $\mathbf{F} \pm \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.	
	$\mathbf{F} = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$	A1	SC4 for $\mathbf{F} = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly	
			intended.	4
(ii)	$\arctan\left(\frac{16}{10}\right)$	M1	Accept equivalent and FT their F only. Do not accept wrong angle. Accept 360 - $\arctan\left(\frac{16}{10}\right)$	
	57.994 so 58.0° (3 s. f.)	A1	cao. Accept 302° (3 s f.)	2
		6		

6 (i)	$\binom{6}{9}$ = 1.5 a giving $\mathbf{a} = \binom{4}{6}$ so $\binom{4}{6}$ m s ⁻²	M1	Use of N2L with an attempt to find a . Condone spurious notation.	
		A1	Must be a vector in proper form. Penalise only once in paper.	
(::)			Hardon to the the transfer of	2
(ii)	Angle is $\arctan(\frac{6}{4})$	M1	Use of arctan with their $\frac{6}{4}$ or $\frac{4}{6}$ or equiv.	
	= 56.309 so 56.3° (3 s. f.)	F1	May use F . FT their a provided both cpts are +ve and non-zero.	
				2
(iii)	Using $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ we have	M1	Appropriate single <i>uvast</i> (or equivalent sequence of <i>uvast</i>). If integration used twice condone omission of $\mathbf{r}(0)$ but not $\mathbf{v}(0)$.	
	$\mathbf{s} = 2 \begin{pmatrix} -2 \\ 3 \end{pmatrix} + 0.5 \times 4 \begin{pmatrix} 4 \\ 6 \end{pmatrix}$	A1	FT their a only	
	$so \begin{pmatrix} 4 \\ 18 \end{pmatrix} m$	A1	cao. isw for magnitude subsequently found.	
			Vector must be in proper form (penalise only once in paper).	
		7		3

		mark		Sub
7(i)	$ \mathbf{F} = 12.5 \text{ so } 12.5 \text{ N}$ bearing is $90 - \arctan \frac{12}{3.5}$ = $(0)16.260 \text{ so } (0)16.3^{\circ} \text{ (3 s. f.)}$	B1 M1 A1	Use of arctan with 3.5 and 12 or equiv May be obtained directly as $\arctan \frac{3.5}{12}$	3
(ii)	$24/7 = 12/3.5 \text{ or } \dots$ $\mathbf{G} = 2\mathbf{F} \text{ so } \mathbf{G} = 2 \mathbf{F} $	E1	Accept statement following G = 2 F shown. Accept equivalent in words.	2
(iii)	$\frac{9+12}{3.5} = \frac{-18+q}{12}$ So $q = 6 \times 12 + 18 = 90$	M1	Or equivalent or in scalar equations. Accept $\frac{21}{q-18} \text{ or } \frac{q-18}{21} = \tan \text{ (i) or } \tan(90 - \text{ (i))}$ Accept 90j	2
		111		7