		mark		Sub
1(i)	$\left.\begin{array}{l}\mathbf{R}+\binom{-3}{4}+\binom{21}{-7}=\binom{0}{0} \\ 3\end{array}\right)$	M1	Sum to zero	

		mark		Sub
2(i)	$\begin{aligned} & x=2 \Rightarrow t=4 \\ & t=4 \Rightarrow y=16-1=15 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { F1 } \end{aligned}$	$\begin{aligned} & \text { cao } \\ & \text { FT their } t \text { and } y \text {. Accept } 15 \mathbf{j} \end{aligned}$	2
(ii)	$x=\frac{1}{2} t \text { and } y=t^{2}-1$ Eliminating t gives $y=\left((2 x)^{2}-1\right)=4 x^{2}-1$	M1 E1	Attempt at elimination of expressions for x and y in terms of t Accept seeing $(2 x)^{2}-1=4 x^{2}-1$	2
(iii)	either We require $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ so $8 x=1$ $x=\frac{1}{8}$ and the point is $\left(\frac{1}{8},-\frac{15}{16}\right)$ or Differentiate to find \mathbf{v} equate \mathbf{i} and \mathbf{j} cpts so $t=\frac{1}{4}$ and the point is $\left(\frac{1}{8},-\frac{15}{16}\right)$	M1 B1 A1 M1 M1 A1	This may be implied Differentiating correctly to obtain $8 x$ Equating the \mathbf{i} and \mathbf{j} cpts of their \mathbf{v}	3
	total	7		

3	(i)	$\begin{aligned} & \|\mathbf{p}\|=\sqrt{8^{2}+1^{2}} \\ & \|\mathbf{p}\|=\sqrt{65} \end{aligned}$ $\|\mathbf{q}\|=\sqrt{4^{2}+(-7)^{2}}=\sqrt{65}$ They are equal	M1 A1 A1 [3]	For applying Pythagoras theorem Condone no explicit statement that they are equal	
	(ii)	$\begin{aligned} & \mathbf{p}+\mathbf{q}=12 \mathbf{i}-6 \mathbf{j} \\ & \mathbf{p}+\mathbf{q}=6(2 \mathbf{i}-\mathbf{j}) \end{aligned}$ so $\mathbf{p}+\mathbf{q}$ is parallel to $2 \mathbf{i}-\mathbf{j}$	M1 E1 [2]	Accept argument based on gradients being equal. "Parallel" may be implied	
	(iii)	 The angle is 90°	B1 B1 B1 [3]	One mark for each of $\mathbf{p}+\mathbf{q}$ and $\mathbf{p - q}$ drawn correctly SC1 if arrows missing or incorrect from otherwise correct vectors Cao	

		Mark	Comment	Sub
5(i)	$\mathbf{F}+\binom{-4}{8}=6\binom{2}{3}$ $\mathbf{F}=\binom{16}{10}$	M1 B1 B1 A1	N2L. $F=m a$. All forces present Addition to get resultant. May be implied. For $\mathbf{F} \pm\binom{-4}{8}=6\binom{2}{3}$. SC4 for $\mathbf{F}=\binom{16}{10}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly intended.	4
(ii)	$\begin{aligned} & \arctan \left(\frac{16}{10}\right) \\ & 57.994 \ldots \text { so } 58.0^{\circ} \text { (3 s. f.) } \end{aligned}$	M1 A1	Accep equivalent and FT their F only. Do not accept wrong angle. Accept $360-\arctan \left(\frac{16}{10}\right)$ cao. Accept 302° (3 s f.)	2
		6		

6 (i)	$\binom{6}{9}=1.5 \mathbf{a}$ giving $\mathbf{a}=\binom{4}{6}$ so $\binom{4}{6} \mathrm{~m} \mathrm{~s}^{-2}$	M1 A1	Use of N2L with an attempt to find a. Condone spurious notation. Must be a vector in proper form. Penalise only once in paper.	2
(ii)	$\begin{aligned} & \text { Angle is } \arctan \left(\frac{6}{4}\right) \\ & =56.309 \ldots \text { so } 56.3^{\circ}(3 \text { s. f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { F1 } \end{aligned}$	Use of arctan with their $\frac{6}{4}$ or $\frac{4}{6}$ or equiv. May use F. FT their a provided both cpts are +ve and non-zero.	2
(iii)	Using $\mathbf{s}=t \mathbf{u}+0.5 t^{2} \mathbf{a}$ we have $\begin{aligned} & \mathbf{s}=2\binom{-2}{3}+0.5 \times 4\binom{4}{6} \\ & \text { so }\binom{4}{18} \mathrm{~m} \end{aligned}$	M1 A1 A1 7	Appropriate single uvast (or equivalent sequence of uvast). If integration used twice condone omission of $\mathbf{r}(0)$ but not $\mathrm{v}(0)$. FT their a only cao. isw for magnitude subsequently found. Vector must be in proper form (penalise only once in paper).	3

		mark		Sub
7(i)	$\|\mathbf{F}\|=12.5 \text { so } 12.5 \mathrm{~N}$ bearing is $90-\arctan \frac{12}{3.5}$ $=(0) 16.260 \ldots \text { so }(0) 16.3^{\circ}(3 \text { s. f. })$	B1 M1 A1	Use of arctan with 3.5 and 12 or equiv May be obtained directly as arctan $\frac{3.5}{12}$	
(ii)	$24 / 7=12 / 3.5 \text { or } \ldots .$ $\mathbf{G}=2 \mathbf{F} \text { so }\|\mathbf{G}\|=2\|\mathbf{F}\|$	E1 B1	Accept statement following $\mathbf{G}=2 \mathbf{F}$ shown. Accept equivalent in words.	2
$\begin{aligned} & \text { (iii } \\ & \text {) } \end{aligned}$	$\frac{9+12}{3.5}=\frac{-18+q}{12}$ so $q=6 \times 12+18=90$	M1 A1	Or equivalent or in scalar equations. Accept $\begin{equation*} \frac{21}{q-18} \text { or } \frac{q-18}{21}=\tan (\mathrm{i}) \text { or } \tan (90- \tag{i} \end{equation*}$ Accep 90j	2
				7

